Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.19.21259125

ABSTRACT

Disease caused by SARS-CoV-2 coronavirus (COVID-19) has resulted in significant morbidity and mortality world-wide. A systemic hyper-inflammation characterizes the severe COVID-19 disease often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. In the present study we report higher plasma abundance of soluble urokinase-type plasminogen activator receptor (sUPAR), expressed by an abnormally expanded circulating myeloid cell population, in severe COVID-19 patients with ARDS. Plasma sUPAR level was found to be linked to a characteristic proteomic signature of plasma, linked to coagulation disorders and complement activation. Receiver operator characteristics curve analysis identified a cut-off value of sUPAR at 1996.809 pg/ml that could predict survival in our cohort (Odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower sUPAR level than this threshold concentration was associated with a differential expression of the immune transcriptome as well as favourable clinical outcomes, both in terms of survival benefit (Hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus we identified sUPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Subject(s)
Coronavirus Infections , Respiratory Distress Syndrome , Blood Coagulation Disorders, Inherited , COVID-19 , Inflammation
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.25.436930

ABSTRACT

Emergence of distinct viral clades has been observed in SARS-CoV2 variants across the world and India. Identification of the genomic diversity and the phylodynamic profiles of the prevalent strains of the country are critical to understand the evolution and spread of the variants. We performed whole-genome sequencing of 54 SARS-CoV2 strains collected from COVID-19 patients in Kolkata, West Bengal during August to October 2020. Phylogeographic and phylodynamic analyses were performed using these 54 and other sequences from India and abroad available in GISAID database. Spatio-temporal evolutionary dynamics of the pathogen across various regions and states of India over three different time periods in the year 2020 were analyzed. We estimated the clade dynamics of the Indian strains and compared the clade specific mutations and the co-mutation patterns across states and union territories of India over the time course. We observed that GR, GH and G (GISAID) or 20B and 20A (Nextstrain) clades were the prevalent clades in India during middle and later half of the year 2020. However, frequent mutations and co-mutations observed within the major clades across time periods do not show much overlap, indicating emergence of newer mutations in the viral population prevailing in the country. Further, we explored the possible association of specific mutations and co-mutations with the infection outcomes manifested within the Indian patients.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.25.20237883

ABSTRACT

Introduction: A single center open label phase II randomised control trial was done to assess the pathogen and host-intrinsic factors influencing clinical and immunological benefits of passive immunization using convalescent plasma therapy (CPT), in addition to standard of care (SOC) therapy in severe COVID-19 patients, as compared to patients only on SOC therapy. Methods: Convalescent plasma was collected from patients recovered from COVID-19 following a screening protocol which also included measuring plasma anti SARS-CoV2 spike IgG content. Retrospectively, neutralizing antibody content was measured and proteome was characterized by LC-MS/MS for all convalescent plasma units that were transfused to patients. Severe COVID-19 patients with evidence for acute respiratory distress syndrome (ARDS) with PaO2/FiO2 ratio 100-300 (moderate ARDS) were recruited and randomised into two parallel arms of SOC and CPT, N=40 in each arm. Peripheral blood samples were collected on the day of enrolment (T1) followed by day3/4 (T2) and day 7 (T3). RT-PCR and sequencing was done for SARS-CoV2 RNA isolated from nasopharyngeal swabs collected at T1. A panel of cytokines and neutralizing antibody content were measured in plasma at all three timepoints. Patients were followed up for 30 days post-admission to assess the primary outcomes of all cause mortality and immunological correlates for clinical benefits. Results: While across all age-groups no statistically significant clinical benefit was registered for patients in the CPT arm, significant immediate mitigation of hypoxia, reduction in hospital stay as well as survival benefit was recorded in severe COVID-19 patients with ARDS aged less than 67 years receiving convalescent plasma therapy. In addition to its neutralizing antibody content a prominent effect of convalescent plasma on attenuation of systemic cytokine levels possibly contributed to its benefits. Conclusion: Precise targeting of severe COVID-19 patients is necessary for reaping the clinical benefits of convalescent plasma therapy.


Subject(s)
COVID-19 , Hypoxia , Respiratory Distress Syndrome
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.21.20199109

ABSTRACT

In a randomized control trial on convalescent plasma therapy (CPT) in severe COVID-19, we characterized the nature, in terms of abundance of forty eight cytokines, and dimensions, in terms of their interrelationships, of the hyper-immune activation-associated cytokine storm in patients suffering from acute respiratory distress syndrome. We found plasma MCP3 level to be a key correlate for mitigation of hypoxia, irrespective of therapeutic regimen. We also identified an anti-inflammatory role of CPT independent of its neutralizing antibody content, and a linear regression analysis revealed that neutralizing antibodies as well as the anti-inflammatory effect of CPT both contribute to marked immediate reductions in hypoxia, as compared to patients on standard therapy.


Subject(s)
Respiratory Distress Syndrome , Hypoxia , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.26.062471

ABSTRACT

This study explores the divergence pattern of SARS-CoV-2 using whole genome sequences of the isolates from various COVID-19 affected countries. The phylogenomic analysis indicates the presence of at least four distinct groups of the SARS-CoV-2 genomes. The emergent groups have been found to be associated with signature structural changes in specific proteins. Also, this study reveals the differential levels of divergence patterns for the protein coding regions. Moreover, we have predicted the impact of structural changes on a couple of important viral proteins via structural modelling techniques. This study further advocates for more viral genetic studies with associated clinical outcomes and hosts response for better understanding of SARS-CoV-2 pathogenesis enabling better mitigation of this pandemic situation.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.05.20054775

ABSTRACT

Objective: In absence of any vaccine, the Corona Virus Disease 2019 (COVID-19) pandemic is being contained through a non-pharmaceutical measure termed Social Distancing (SD). However, whether SD alone is enough to flatten the epidemic curve is debatable. Using a Stochastic Computational Simulation Model, we investigated the impact of increasing SD, hospital beds and COVID-19 detection rates in preventing COVID-19 cases and fatalities. Research Design and Methods: The Stochastic Simulation Model was built using the EpiModel package in R. As a proof of concept study, we ran the simulation on Kasaragod, the most affected district in Kerala. We added 3 compartments to the SEIR model to obtain a SEIQHRF (Susceptible-Exposed-Infectious-Quarantined-Hospitalised-Recovered-Fatal) model. Results: Implementing SD only delayed the appearance of peak prevalence of COVID-19 cases. Doubling of hospital beds could not reduce the fatal cases probably due to its overwhelming number compared to the hospital beds. Increasing detection rates could significantly flatten the curve and reduce the peak prevalence of cases (increasing detection rate by 5 times could reduce case number to half). Conclusions: An effective strategy to contain the epidemic spread of COVID-19 in India is to increase detection rates in combination with SD measures and increase in hospital beds.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL